Soal Matematika kelas XI + pembahasannya

  1. 10 orang finalis suatu lomba kecantikan akan dipilih secara acak 3 yang terbaik. Banyak cara pemilihan tersebut ada … cara.
    A. 70
    B. 80
    C. 120
    D. 360
    E. 720
    PEMBAHASAN :
    Karena tidak ada aturan atau pengurutan, maka kita menggunakan kombinasi atau kombinatorika.
    10C3 = \frac{10!}{(10-3)!.3!}
        = \frac{7!.8.9.10}{7!.3!}
        = \frac{8.9.10}{3.2.1}
        = 4.3.10 = 120 cara
    JAWABAN : C
  2. Banyaknya bilangan antara 2000 dan 6000 yang dapat disusun dari angka 0,1,2,3,4,5,6,7, dan tidak ada angka yang sama adalah …
    A. 1680
    B. 1470
    C. 1260
    D. 1050
    E. 840
    PEMBAHASAN :
    Seperti yang diketahui bahwa bilangan antara 2000 dan 6000 adalah bilangan yang terdiri dari 4 digit, berarti kita membuat table dengan 4 kolom.




    Kolom pertama akan diisi oleh 2, 3, 4 dan 5 (karena digit awal tidak boleh lebih dari 6. Jadi kolom pertama ada 4 angka.
    kolom kedua diisi dengan 7 angka (sebenarnya ada 8 angka tapi sudah dipake pada kolom pertama)
    Kolom ketiga dan keempat diisi dengan 6 angka dan 4 angka.
    INGAT : kata kunci dalam soal itu adalah ‘tidak ada angka yang sama’.
    4
    7
    6
    5
    = 4 x 7 x 6 x 5
    = 840
    JAWABAN : E
  3. Dari kota A ke kota B dilayani oleh 4 bus dan dari B ke C oleh 3 bus. Seseorang berangkat dari kota A ke kota C melalui B kemudian kembali lagi ke A juga melalui B. Jika saat kembali dari C ke A, ia tidak mau menggunakan bus yang sama, maka banyak cara perjalanan orang tersebut adalah …
    A. 12
    B. 36
    C. 72
    D. 96
    E. 144
    PEMBAHASAN :
    Rute pergi :
    Dari A ke B : 4 bus
    Dari B ke C : 3 bus
    Rute pulang :
    Dari C ke B : 2 bus (kasusnya sama seperti soal sebelumnya)
    Dari B ke A : 3 bus (kasusnya sama seperti soal sebelumnya)
    Jadi banyak caranya adalah : 4 x 3 x 2 x 3 = 72 cara
    JAWABAN : C
  4. Banyak garis yang dapat dibuat dari 8 titik yang tersedia, dengan tidak ada 3 titik yang segaris adalah …
    A. 336
    B. 168
    C. 56
    D. 28
    E. 16
    PEMBAHASAN :
    8C3 = \frac{8!}{(8-3)!.3!}
       = \frac{5!.6.7.8}{5!.3!}
       = \frac{6.7.8}{3.2.1}
       = 7.8 = 56 cara
    JAWABAN : C
  5. Dalam kantong I terdapat 5 kelereng merah dan 3 kelereng putih, dalam kantong II terdapat 4 kelereng merah dan 6 kelereng hitam. Dari setiap kantong diambil satu kelereng secara acak. Peluang terambilnya kelereng putih dari kantong I dan kelereng hitam dari kantong II adalah …
    A. 39/40
    B. 9/13
    C. 1/2
    D. 9/20
    E. 9/40
    PEMBAHASAN :
    Kantong I :
    Peluang terambilnya kelereng putih = 3/8
    Kantong II :
    Peluang terambilnya kelereng hitam = 6/10
    Jadi, peluang terambilnya kelereng putih dari kantong I dan kelereng hitam dari kantong II adalah 3/8 x 6/10 = 18/80 = 9/40
    JAWABAN : E
  6. A,B,C, dan D akan berfoto secara berdampingan. Peluang A dan B selalu berdampingan adalah …
    A. 1/12
    B. 1/6
    C. 1/3
    D. 1/2
    E. 2/3
    PEMBAHASAN :
    Pola yang mungkin terjadi yaitu : AB C D atau BA CD.
    Pola AB C D ini akan terjadi dengan beberapa susunan, yaitu

    3P3 = \frac{3!}{(3-3)!}
       = 3.2.1 = 6
    Pola BA C D ini akan terjadi dengan beberapa susunan, yaitu

    3P3 = \frac{3!}{(3-3)!}
       = 3.2.1 = 6
    Untuk keseluruhannya, pola A B C D akan terjadi dengan beberapa susunan, yaitu :

    4P4 = \frac{4!}{(4-4)!}
       = 4.3.2.1 = 24
    Jadi peluang A dan B berdampingan adalah :
      P(A) = \frac{n(A)}{S}
           = \frac{6 + 6}{24}
           = 1/2
    JAWABAN : D
  7. Sebuah kotak berisi 5 bola merah, 4 bola biru, dan 3 bola kuning. Dari dalam kotak diambil 3 bola sekaligus secara acak, peluang terambil 2 bola merah dan 1 bola biru adalah …
    A. 1/10
    B. 5/36
    C. 1/6
    D. 2/11
    E. 4/11
    PEMBAHASAN :
    Cara mengambil 2 bola merah :

    5C2 = \frac{5!}{(5-2)!.2!}
       = \frac{3!.4.5}{3!.2!}
       = \frac{4.5}{2.1}
       = 4.5 = 10 cara
    Cara mengambil 1 bola biru :
    4C1 = \frac{4!}{(4-1)!.1!}
       = \frac{3!.4}{3!.1!}
       = 4 cara
    Pengambilan bola sekaligus :
    12C3 = \frac{12!}{(12-3)!.3!}
        = \frac{9!.10.11.12}{9!.3!}
        = \frac{10.11.12}{3.2.1}
         = 10.11.2 = 220 cara
    Peluang terambilnya 2 bola merah dan 1 bola biru :
    P = \frac{_5C_2 \cdot _4C_1}{_{12}C_3}
      = \frac{10.4}{220}
      = 2/11
    JAWABAN : D
  8. Dalam suatu populasi keluarga dengan tiga orang anak, peluang keluarga tersebut mempunyai paling sedikit dua anak laki – laki adalah …
    A. 1/8
    B. 1/3
    C. 3/8
    D. 1/2
    E. 3/4
    PEMBAHASAN :
    misal : perempuan = P , laki-laki = L
    Kemungkinan anak yang terlahir dalam suatu keluarga : LLLLLP, LPP, PPP, PPL, PLL, PLP, LPL.
    Jadi peluangnya adalah
    P(A) = \frac{4}{8}  = 1/2
    JAWABAN : D
  9. Dua buah dadu dilempar bersama – sama. Peluang munculnya jumlah mata dadu 9 atau 10 adalah …
    A. 5/36
    B. 7/36
    C. 8/36
    D. 9/36
    E. 11/36
    PEMBAHASAN :
    S = {(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5)(4, 6) (5, 1) (5, 2) (5, 3) (5, 4)(5, 5)(5, 6) (6, 1) (6, 2) (6, 3)(6, 4) (6, 5) (6, 6)}
    Dua mata dadu berjumlah 9 : (3,6) (4,5) (5,4) (6,3)
    Dua mata dadu berjumlah 10 : (4,6) (5,5) (6,4)
    P(A) = \frac{4+3}{36}  = 7/36
    JAWABAN : B
  10. Sebuah dompet berisi uang logam, 5 keping lima ratusan dan 2 keping ratusan rupiah. Dompet yag lain berisi uang logam 3 keping lima ratusan dan 1 keping ratusan rupiah. Jika sebuah uang logam diambil secara acak dari salah satu dompet, peluang untuk mendapatkan uang logam ratusan rupiah adalah …
    A. 3/56
    B. 6/28
    C. 15/28
    D. 29/56
    E. 30/56
    PEMBAHASAN :
    Kemungkinan yang terjadi adalah pengambilan sebuah logam ratusan di dompet I atau sebuah logam ratusan di dompet II :
    Dompet I : peluang mendapatkan logam ratusan adalah
    P(A) = 2/7
    Dompet II : peluang mendapatkan logam ratusan adalah
    P(A) = 3/4
    P(A) Dompet I + P(A) Dompet II
          = 2/7 + 1/4
          = 8/28 + 7/28
          = 15/28
    JAWABAN : C


    ESSAY
  11. Tentukan persamaan lingkaran yang berpusat (3,4) dan berjari-jari 6 !
    Jawab :
    (x - 3)2 + ( y - 4)2 = 62 Û x2 + y2 - 6x - 8y - 11 = 0 
    12.  Tentukan persamaan lingkaran yang berpusat (2,3) dan melalui titik (5,-1) !
    Jawab :
    Persamaan lingkaran yang berpusat (2,3 ) adalah (x - 2)2 + ( y - 3)2 = r2
    Melalui titik (5,-1) maka : (5 - 2)2 + (- 1- 3)2 = r2 Û r2 = 25
    Jadi persamaan lingkarannya : (x - 2)2 + ( y - 3)2 = 25 atau
    x2 + y2 - 4x + 6y - 12 = 0


    13. Diketahui titik A(5,-1) dan B(2,4). Tentukan persamaan lingkaran yang diameternya
    melalui titik A dan B !
    Jawab :



    14. Tentukan persamaan lingkaran yang berpusat di titik (2,-3) dan menyinggung garis
    3x - 4y + 7 = 0 !


    15. Tentukan pusat lingkaran x2 + y2 + 4x - 6y + 13 = 0 !
    Jawab :


    16. Tentukan jari-jari lingkaran x2 + y2 - 4x + 2y + c = 0 yang melalui titik A(5,-1) !
    Jawab :


    17. Tentukan jari-jari dan pusat lingkaran 4x2 + 4y2 + 4x - 12y + 1 = 0 !


    18. Tentukan m supaya lingkaran x2 + y2 - 4x + 6y + m = 0 mempunyai jari-jari 5 !
    Jawab :


    19. Agar garis y = x + c menyinggung lingkaran x2 + y2 = 25 maka tentukan c !
    Jawab :

    20. Tentukan a agar garis y = x + a menyinggung lingkaran x2 + y2 - 6x - 2y + 2 = 0 !
    Jawab :

Komentar

Postingan populer dari blog ini

Soal Sosiologi kelas XI + Jawabann

ISTILAH DALAM INTERNET